Machine Learning Applications
in Dark Matter Search




Previous work in High Energy Physics

> Improving the significance of resonance signal (K*°) using Machine

Learning Techniques in high energy h:
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Introduction to Dark Matter

« Compelling evidence from a number of astrophysical observations.

e Hypothetical form of matter thought to account for ~27% of the
energy density of the universe.

e Does not interact with electromagnetic radiation, hence called
“dark”.

e Non-baryonic in nature and possibly composed of yet undiscovered
particles e.g Weakly interacting massive particles (WIMPs).

e They interact with gravity and other weak-like forces which are not
a part of the Standard Model.

« We will be studying the dark matter detection experiment of
SuperCDMS.
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Dark Matter Search by SuperCDMS

* Experiment: Super Cryogenic Dark Typical ER NR band
Matter Search (SuperCDMS).

e Search: WIMPs as a dark matter
candidate.

 Measures: Phonon and charge signals.
 Signal: Nuclear Recoils (NR).
e Background: Electron Recoils (ER).

» My work: Separate ER and NR using S
Machine Learning Techniques. R MK IR TR T
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Flow Chart of Analysis

[ Get dataset and apply preselection cuts }

[Traditional method} [ ML method }
. Fiducial Volume(FV) optimizatio? [Reconstruct relevant varlables]
» Define phonon radial cut Il
e Define charge symmetric cut [ Train and Test BDT ]
* Define charge radial cut JL
- — / [ Apply cut on }
BDT score D

[ Classification of ER and NR events } B
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Data Set: Model

« Events were taken from 252Cf,; and 133Ba,,
data.

 As dark matter particles have not been
discovered yet, we need a system to mimic the
dark matter signal, and a system to mimic the
background events.

 Dark matter signal: Neutrons from Cf source
(Nuclear recoils)

 Background: Gamma from Ba source. (Electron
recoils)

—



Data and Preselection cuts

>Data was collected during the period Aug
2013-Aug 2014.

Not Empty Removes empty events in the detector with no trigger.

Good Flashtime Removes events when the detector was not flashed for period
greater than 3300 seconds.

Base Temperature Removes events when the base temperature was not in the
good range.

Voltage Bias Ensures voltage was maintained within 4V range.

Good Start time Removes events with Non Stationary Optimal Filter delay.

Analysis Phonon recoil energy greater than 10 keV.
threshold
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WIMP Signal Model

WIMP Model
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« Weight vector is calculated by taking the
ratio of corrected sprectrum (black) and

Cf data (green)

- Weigh each event of the Cf data by the

corresponding weight in the weight
vector.

ﬁ




Phonon Radial Cut
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« prpartOF is the ratio of outer phonon sum and total
phonon energy. ptNF is total phonon energy

« Phonon radial cut removes high-radius phonon

events i.e events above the Exponential fit. n



FV: Charge Symmetric Cut

Z1: Barium-ba, Weeks 1-6: Inner Charge(S2) vs Inner Charge(S1)

* Inner charges

collected from side 1 &} —onerge Symmeticcu
and side 2. 3
« Geometry of the g
oL
detector- 2
Asymmetric charge <
collection near 3
surface, symmetric :
charge collection in or
the bulk region. e
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FV: Charge Radial Cut

Z1: Barium-ba, Side 1: Outer Charge vs Inner Charge Z1: Barium-ba, Side 2: Outer Charge vs Inner Charge
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Removes events closer to the cylindrical sidewall of the detector i.e
larger value of outer charges.




ML classification of NR and ER events

 We have used Cf data as a source of NR events
and Ba data as a source of ER events.

Features used for Training our BDT

precoiltNF: the non-luke phonon energy

gqsummaxOF: sum for the side with the maximum gqsum (inner+outer charge)
ytNF: Yield i.e gsummaxOF/precoiltNF

qzpartOF: Z-direction fiducializing parameter for charge

qrpartOF: Radial fiducializing parameter for charge

pzpartOF: Z-direction fiducializing parameter for phonon

prpartOF: Radial fiducializing parameter for phonon
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Input features used for training of BDT
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BDT distributions

Cut efficiencies and optimal cut value

TMVA overtraining check for classifier: BDT
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Cut value applied on EDT output BDT response

« We take the BDT cut value to be -0.0528
« Events with BDT response> BDT cut value are classified as
signal (NR).
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ML Application Phase results: ER NR bands
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ML Application Phase results: Yield bands
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Conclusion

« BDT cut provides an event by event separation of Electron
Recoils and Nuclear Recoils.

- We achieve an enhanced NR band after FV cuts and BDT
classification.

- We have demonstrated a way to get a pure NR band (and remove

ER background contributions) in the detector using ML
techniques, this can be adapted for DM search.

 Further classification of the NR events which may have
possibly come from WIMPs and neutrons.

ﬂ






SuperCDMS experiment detector

* The Super Cryogenic Dark Matter
Search (SuperCDMS) experiment is
designed to directly detect particle
dark matter in the form of WIMPs.

The Ge-made interleaved Z-sensitive
lonization and Phonon (iZIP)
deteCtOrS aimS at measu ring and Figure reference: Applied Physics Letters,
distinguishing ionization and phonon o 1%% " 1© P- 164195 2923
signals for nuclear recoils(NR) -
produced by WIMPs and electron
recoils(ER) produced by background
sources.

Charge
Primary.Phonons

Luke Phonon’

Figure reference:

https://thesis.library.caltech.edu/11056/ ﬂ


https://thesis.library.caltech.edu/11056/

Fiducial Volume Optimization

* Fiducial Volume Optimization—» removes unwanted
surface events and outer edge events.
(“Fiducialization”)

* These unwanted events lead to misidentification of
ERs with suppressed ionization collection as NRs.

* Fiducial Volume (FV) of the detector -
Hypervolume which is set by optimizing cuts in
various parameter space.

 Events inside the FV are called “bulk” events and
events outside the FV are called “surface” events.

ﬂ



Features chosen ( Reasons)

precoiltNF: Difference in distribution at low phonon energy

gsummaxOF: sum for the side with the maximum qsum (inner+outer charge)

ytNF: Yield i.e gsummaxOF/precoiltNF, a classic CDMS discriminator.

gzpartOF: Z-direction fiducializing parameter for charge, removes near surface events
qgrpartOF: Radial fiducializing parameter for charge

pzpartOF: Z-direction fiducializing parameter for phonon

prpartOF: Radial fiducializing parameter for phonon

ﬂ



Theory spectra from Lewin and Smith

d.R _ RO e_ER/EOr
dER EOI‘

— ER is the Recoil Energy

— Eg is the most probably KE of dark matter of mass Mp
— R is the event rate per unit mass
— Ry is the total event rate

— r = 4MDMT/(MD + MT)2

 Event rate is expressed in events/keV*kg*day
or “dru”.

 Reference: ).D. L.ewin, PE Smith/Astroparticle
Physics 6 (1996)
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Final Numbers after FV and BDT cut

 Passage fraction (ratio of number of events
passing the FV cut and total number of
events)=67.7 %

 The fraction of events classified as NR by ML
improves from 54.49 % to 56.28 % after the
application of FV and BDT cut.




BDT algorithm flow chart
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DT algorithm

DT algorithm

Training data sample
(signal and background) ;c:
(each signal and background event have same set of variables) >
[
]
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- O O O O O O O . N . . . . E . .. . . . . = - ----------------------------I
Scan over training o s !
data set Original data set with same — »|First DT |\
™ weights for all events !
Calculate misidentification error of the tree
and re-weight the misidentified events
(miss identification error and re-weight factor
of events are calculated by Adaptive boosting) Y
¥ o
Scan over new g
i, e New Re-weighted data set ———| Second DT+ | 5
1
: LL
H 1

DT algorithm

Scan over

Continue upto n" DT
(We can choose value of n)

\

nth Re-weighted datase.t__

BDT response | =

n™ Re-weighted dataset| ———»| hth DT

Based on the output of all trees in the forest, each event is assigned a BDT response value
ranging from -1 to +1. Background-like events will have a BDT response value shifted
towards -1, and signal-like events will have a response value shifted towards +1




Adaptive Boosted Decision Trees

AdaBoost: learning ensemble

) 1 1 — weighted_error(f;)
W{ —_— - lIl .
2 weighted_error(f;)

+ Start same weight for all points: « = 1/N

* Fort=1,.T
- Learn f,(x) with data weights «;
-|Compute coefficient w,

X, €& — a
. W,
- [Recompute weights , " x, €, if fix)=y,

——

_W _
o€, iffix)=y,

- Normalize weights «.

* Final model predicts by:
T .
~ . ~ ; N
y = sign (Z Wt.ff(x)) D im1 O
t=1

ﬂ




BDT parameters

* Number of Trees= 850

 Min node size i.e Minimum percentage of
training events required in a leaf nhode= 2.5%

« Max depth i.e max depth of DT= 3

 Learning rate for AdaBoost algorithm
adaboostbeta= 0.5

 Separation Type= Gini Index

* Ncuts Number of grid points in variable range
used Iin finding optimal cut in node splitting=20

ﬂ



How do | select which feature | take first?

Gini Index : Define as p? + g? (at a given node)

» p: fraction of positive (signal) events
» g=1-p : fraction of negative (background) events

Plot of Gini index vs p (positive/signal)

1
Weighted Gini Split: /
0.9
—_ \ |
IG - fleft * Gleft + fright * Gright | \ /
o \
where, N%
ﬁL 0.7
fiese = fraction of events which go in the left split o
[righe = fraction of events which go in the right split
Giegr = Gini index of left node

G rigne = Gini index of right node




Correlations

Correlation Matrix (signal) Correlation Matrix (background)

Linear correlation coefficients in % 100 Linear correlation coefficients in % 100
summaxOF B6 84 .80 summaxOF ﬂ .80
prpartOF é —60 prpartOF —60
a0 _____________________ ____________________ .................... 5 A =
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Additional content

: Ranking input variables (nethod specific)...
The extracted signal of K*” is fitted with Breit-Wigner distribution plus a residual background X Raﬂkiﬂg r'qu].t (t')p ‘Jﬂﬂablt i.S b'fqt faﬂktd)

function. Mass and width for K*” can be obtained from fit parameters. Breit-Wigner function
is defined below:

Y Iy

- 5+ Res .Bkg. (1)

LR (A’fxi( —:1’1[!_}2 + %
128
122 where My and T are the mass and width of the K**. M is 7K invariant mass. The parameter . i . . .I. nl 01
120 Y gives the Breit-Wigner area. The last term is residual background function. which is taken as JLlE
1 the polynomial of second order in invariant mass (Ak1;rK+B;HIK+C}. The parameter Y for each . . R ].tNF . l 5-, A 01
12 pr bin gives the raw yield counts of K*'. Extracted signal of K*¥ is fitted with Breit-Wigner i : pr'fc')l » Loafge-
132 distribution and is shown in the right panel of Fig. 14 and Fig. 15 for two different cases (mixed . . EUNNBKDF . .I. 445 01
12 background and like sign event background), where blue line indicates fit for signal with resid- t i q ! ¢ LA70E
s ual background and red line indicates fit for only residual background. . . . 4 Y

L4 poartOF ¢ 142581

D qzpartOF ¢ 1,389%-61
L Qrpartlf : 1.334e-61
L prpartOF ¢ 1.188e-61




Boosted Decision Trees Control plots

error fraction vs tree number Boost weights vs tree
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Training events selection

NR events from Cf ER events used from Ba
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