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Abstract

A nonlinear system is a system in which the change of the output is not proportional to the change

of the input. Nonlinear problems are of interest to engineers, physicists, mathematicians, and many

other scientists because most systems are inherently nonlinear in nature. In this experiment, We

study the Lorenz system of chaotic strange attractor. We implement the Lorenz circuit numerically

and experimentally to obtain various plots amongst it’s variables. Further, We study about the

Self-Synchronization property of the Lorenz system and learn about it’s application in Chaotic

Signal Masking. Also, We implement the PWL circuits for the square and cubic functions.
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Chaos: When the present determines

the future, but the approximate

present does not approximately

determine the future.

Edward Lorenz

NON-LINEAR DYNAMICS AND CHAOS

A nonlinear system is a system in which the change of the output is not proportional

to the change of the input. Nonlinear dynamics, also popularly known as chaos (see Chaos

Theory) is the study of systems governed by equations in which a small change in one vari-

able can induce a large systematic change in the final state of the system. Unlike a linear

system, in which a small change in one variable produces a small and easily quantifiable

systematic change, a nonlinear system exhibits a sensitive dependence on initial conditions:

small or virtually unmeasurable differences in initial conditions can lead to wildly differing

outcomes. This sensitive dependence is sometimes referred to as the ”butterfly effect,” the

assertion that the beating of a butterfly’s wings in Brazil can eventually cause a hurricane

in Texas. This happens even though these systems are deterministic, meaning that their

future behavior is fully determined by their initial conditions, with no random elements

involved.[4] In other words, the deterministic nature of these systems does not make them

predictable. This behavior is known as deterministic chaos, or simply chaos.

There are two main types of dynamical systems: differential equations and iterated

maps. Differential equations describe the evolution of systems in continuous time, whereas

iterated maps arise in problems where time is discrete.

Any general system can be described in terms of differential equations as

ẋi = fi(x1, . . . , xn)

where i ranges from 1 to n, where n is the number of variables in the system.

Iterated systems can be described by recursion relations of the form

xn+1 = f(xn)
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The rule to obtain xn+1 from f(xn) is known as a one-dimensional map. The sequence

x0, x1, x2, . . . is called the orbit starting from x0.

Terminologies

Fractal A fractal is a never-ending pattern. Fractals are infinitely complex patterns

that are self-similar across different scales. They are created by repeating a simple process

over and over in an ongoing feedback loop. Driven by recursion, fractals are images of

dynamic systems – the pictures of Chaos. Geometrically, they exist in between our familiar

dimensions. Fractals can have fractional dimensions.

Example: The Sierpinski triangle is a fractal with the overall shape of an equilateral

triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as

a curve, this is one of the basic examples of self-similar sets, i.e., it is a mathematically

generated pattern that can be reproducible at any magnification or reduction.

FIG. 1. Example of a fractal: The Sierpinski triangle

Attractor An attractor is a set of states (points in the phase space), invariant under

the dynamics, towards which neighboring states in a given basin of attraction asymptotically

approach in the course of dynamic evolution. An attractor is defined as the smallest unit

which cannot be itself decomposed into two or more attractors with distinct basins of attrac-

tion. This restriction is necessary since a dynamical system may have multiple attractors,
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each with its own basin of attraction. There are many types of attractors as shown in the

Fig.2. We are interested to study about the strange attractor.

FIG. 2. Types of attractors

Basin of Attraction An attractor’s basin of attraction is the region of the phase

space, over which iterations are defined, such that any point (any initial condition) in that

region will eventually be iterated into the attractor.

Strange Attractor An attractor is called strange if it has a fractal structure. This

is often the case when the dynamics on it are chaotic. If a strange attractor is chaotic,

exhibiting sensitive dependence on initial conditions, then any two arbitrarily close alter-

native initial points on the attractor, after any of various numbers of iterations, will lead

to points that are arbitrarily far apart (subject to the confines of the attractor). Thus a

dynamic system with a chaotic attractor is locally unstable yet globally stable: once some

sequences have entered the attractor, nearby points diverge from one another but never de-

part from the attractor.Examples of strange attractors include the double-scroll attractor,

Rössler attractor and the Lorenz attractor.
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LORENZ SYSTEM

In 1963, Edward Lorenz (1917-2008), studied convection in the Earth’s atmosphere. As

the Navier-Stokes equations that describe fluid dynamics are very difficult to solve, he sim-

plified them drastically. The model he obtained probably has little to do with what really

happens in the atmosphere. It is a toy-model, but Lorenz soon realized that it as very

interesting in a mathematical sense. The Lorenz system is a system of ordinary differential

equations. There are only three parameters in the model so that each point (x,y,z) symbol-

izes a state of the atmosphere. The Lorenz system is described by the Lorenz equations:

ẋ = α(y − x)

ẏ = ρx− xz − y

ż = xy − βz

We choose the following parameter values in order to obtain a chaotic strange attractor:

α = 10 , ρ = 28 , β =
8
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Why is it an attractor? The Lorenz system is dissipative: meaning volumes in phase

space contract under the flow.

Consider the Lorentz system to be represented by three-dimensional equation ẋ = f(x). We

consider an arbitrary closed surface S(t) for the volume V (t) in the phase space. Surface S

can be thought of as initial conditions for the trajectories. These trajectories evolve into a

new surface S(t+ dt) with a volume of V (t+ dt)

It can easily be shown that

V̇ =

∮
V

∇.f dV

For the Lorenz system, we get :

∇.f =
∂

∂x
[α(y − x)] +

∂

∂y
[ρx− xz − y] +

∂

∂y
[xy − βz]

= −σ − 1− β < 0

Thus, we get

V̇ = −(σ + 1 + b)V
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The solution is given by:

V (t) = V (0)e−(σ+1+b)t

Thus, we can see that the volumes in phase space shrink exponentially fast.

FIG. 3. Volume Element of Phase Space.

7



NUMERICAL SIMULATIONS OF THE LORENZ ATTRACTOR

Plots

We have solved the Lorenz system of non-linear equation of 3 variables by using Fourth

Order Runge-Kutta (RK4) method. The following plots were obtained.

FIG. 4. Plot of x vs t.
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FIG. 5. Plot of y vs t.
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FIG. 6. Plot of z vs x which typically looks like the wings of a butterfly.

FIG. 7. A 3D view of the Lorenz Attractor.
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Correlation dimension

In chaos theory, the correlation dimension is a measure of the dimensionality of the space

occupied by a set of random points, often referred to as a type of fractal dimension. (See

Reference[1])

The correlation dimension can be found using the formula:

C(ǫ) ≈ ǫd where d is the dimension of the system

which can be written as:

logC(ǫ) ≈ d logǫ

FIG. 8. Finding correlation dimension of the Lorenz attractor. The lorenz attrator is almost flat.

And thus has a dimension=2.02
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CIRCUIT

The circuital equations associated to the implementation of Lorenz’s circuit are the fol-

lowing:

C1R5
dX

dt
= −X −

R4

R1

X +
R4

R2

X +
R4

R3

Y

C2R11
dY

dt
= −Y −

R10

R7

XZ +
R10

R8

X

C3R17
dZ

dt
= −Z −

R16

R13

Z +
R16

R14

XY

where

x =
X

k1
, y =

Y

k2
, z =

Y

k3

Here, k1, k2, k3 are appropriate scaling constants for the circuit.

We have taken

k1 =
1

10
, k2 =

1

10
, k3 =

1

30

Thus the rescaled equivalent system becomes:

Ẋ = α(Y −X)

Ẏ = ρX − 30XZ − Y

Ż =
100

30
XY − βZ
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FIG. 9. Circuital implementation of Lorenz equations
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FIG. 10. A typical Lorenz circuit butterfly wings curve obtained in the oscilloscope.
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PARAMETERIZATION

The circuital equations associated to the implementation of Lorenz’s circuit are the fol-

lowing:

C1R5
dX

dt
= −X −

R4

R1

X +
R4

R2

X +
R4

R3

Y

C2R11
dY

dt
= −Y −

R10

R7

XZ +
R10

R8

X

C3R17
dZ

dt
= −Z −

R16

R13

Z +
R16

R14

XY

where

x =
X

k1
, y =

Y

k2
, z =

Y

k3

Here, k1, k2, k3 are appropriate scaling constants for the circuit. We have taken

k1 =
1

10
, k2 =

1

10
, k3 =

1

30

Thus the rescaled equivalent system becomes:

Ẋ = α(Y −X)

Ẏ = ρX − 30XZ − Y

Ż =
100

30
XY − βZ

By changing the resistors R8 and R13 we effectively change the parameters ρ and β

respectively. We then observe the evolution of the curve under such parameterization of

these two resistors.

Parameterization on R8 (ρ)
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FIG. 11. Evolution of x vs y for varying R8
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FIG. 12. Evolution of x vs z for varying R8
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FIG. 13. Evolution of y vs z for varying R8

18



Parameterization on R13 (β)

FIG. 14. Evolution of x vs y for varying R13
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FIG. 15. Evolution of x vs z for varying R13
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FIG. 16. Evolution of x vs z for varying R13

The transition from single scroll to double scroll happens at R8 = 6.14 kΩ with other

values held constant. And at R13 = 15.88 kΩ with other values held constant.
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SYNCHRONIZATION OF LORENZ-BASED CHAOTIC CIRCUITS

Introduction

Chaotic systems provide a rich mechanism for signal and generation, with potential ap-

plications to communications and signal processing. Because chaotic signals are typically

broadband, noiselike, and difficult to predict, they can be used in various contexts for mask-

ing information-bearing waveforms.

Self-Synchronization property:

A chaotic system is self-synchronizing if it can be decomposed into at least two sub-

systems: a drive system (transmitter) and a stable response subsystem (receiver) that

synchronize when coupled with a common signal.[4]

The Lorenz circuit is an example of Synchronized chaotic systems (SCS). It’s ability

to synchronize is robust. Thus, in Lorenz system , the synchronization is highly robust to

perturbations in the drive signal .

The process of Synchronization

First we need to construct two independent Lorenz Attractor circuits which have similar

values of the parameters α, ρ and β. That is we need the circuit to have similar values

of Resistances and Capacitors. Let the Transmitter Circuit be represented by these set of

equations.

ẋ = α(y − x)

ẏ = ρx− xz − y

ż = xy − βz

Now , let us denote the receiver circuit by the set of equations

ẋr = α(yr − xr)

ẏ = ρxr − xrzr − yr

ż = xryr − βz
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To demonstrate the phenomenon of Synchronization, we replace xr in the second and

third equation of the receiver circuit with x of the transmitter circuit.

Thus, the receiver circuit is represented by

ẋ = α(y − x)

ẏ = ρx− xzr − yr

ż = xyr − βz

This system is also refereed to as x-drive system. We denote the transmitter state

variables collectively by the vector d = (x, y, z) and the receiver variable by the vector

r = (xr, yr, zr) when convenient.

Proof of Synchronization

By defining the dynamical errors by e = d−r, it is straightforward to show that synchro-

nization in the Lorenz system is a result of stable error dynamics between the transmitter

and receiver. Assuming that the transmitter and receiver coefficients are identical, a set of

equations that governs the error dynamics is given by

ė1 = α(e2 − e1)

ė2 = −x(t)e3 − e2

ė3 = x(t)e2 − βe3

The error dynamics are globally asymptotically stable at the origin, provided that α, β

> 0. This result follows by considering the 3D Lyapunov function defined by

E(e, t) =
1

2
(
1

α
e21 + e22 + 4e23)

Since E is positive definite and Ė is negative definite, this implies that e(t) → 0 as t → ∞

. Therefore, synchronization occurs as t → ∞
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Observations based on Synchronization

It is expected from the theory that x and xr will follow similar pattern and so will the

other variables y and z.

Thus, we expect that a plot of xr vs x will be a straight line of slope 45o. That is exactly

what we observed.

FIG. 17. Observed trend of x vs xr in the oscilloscope.

FIG. 18. Observed trend of y vs yr in the oscilloscope.
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FIG. 19. Observed trend of z vs zr in the oscilloscope.

Comparision of same variables from both receiver and transmitter circuit

As we can observe that xi(t) vs xi

r
(t) (where i = 1, 2, 3) evolves in a similar fashion.

Therefore synchronization is further verified.
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FIG. 20. Comparison of x(t) vs xr(t).
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FIG. 21. Comparison of y(t) vs yr(t).
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FIG. 22. Comparison of z(t) vs zr(t).
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Plots of cross terms

We get the typical Lorenz curve figures for xz, xy and zy with inputs coming from receiver

and transmitter circuits respectively.

FIG. 23. x(t) vs zr(t)

FIG. 24. x(t) vs yr(t)
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FIG. 25. z(t) vs yr(t)

Applications: Chaotic signal masking in secure Communication

A potential approach to communications applications is based on chaotic signal masking

and recovery[3]. In signal masking, a noiselike masking signal is added at the transmitter

to the information-bearing signal m(t) , and at the receiver the masking is removed. In our

system, the basic idea is to use the received signal to regenerate the masking signal at the

receiver and subtract it from the received signal to recover m(t). This can be done with the

synchronizing receiver circuit, since the ability to synchronize is found experimentally to be

robust, i.e., is not highly sensitive to perturbations in the drive signal and thus can be done

with the masked signal.
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FIG. 26. A Chaotic Masking System

FIG. 27. A message is added between the transmitter and the receiver. The added message can

then be retrieved by using a subtractor circuit at the output of the receiver.
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PWL APPROXIMATION OF NONLINEARITIES

The nonlinear terms in a circuit can be approximated by using Piecewise linear approx-

imation(PWL) of the nonlinear terms.[2] We constructed such PWL circuits for the imple-

mentation of x2 and x3 and found that the circuits functions in a fairly good manner upto

certain voltage limits. They are useful and easy to implement as the circuitry implementing

the PWL functions is realized with a few components like diodes and resistors. Thus, in

some cases they can be used if there is a shortage of multipliers in the lab.

FIG. 28. Circuit diagram for PWL approximation of x2 and x3
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Adj. R-Square 0.99935
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x2
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FIG. 29. Data obtained by PWL x2 circuit. The data is fitted with a quadratic polynomial. It

was observed to follow the expected trend to a good approximation.
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FIG. 30. Data obtained by PWL x3 circuit. The data is fitted with a cubic polynomial. It was

observed to follow the expected trend to a good approximation.
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CONCLUSION

In our study and applications of Non-Linear Circuits, we have achieved the following

things.

• Study of Lorenz Equations of 3D Chaotic Strange Attractor.

• Simulation of the Lorenz Differential Equations to achieve various plots.

• Implementation of Lorenz equations in electronic circuit using Op-Amps and Multi-

pliers. Obtaining the corresponding signal in the oscilloscope and thus, matching with

the simulated graphs.

• Parameterization based on changing of the variable resistors and observing the evolu-

tion of various plots of the Lorenz system.

• Study of self-synchronization property of Chaotic systems and verification of the same.

• Study of application of the synchronization property of the Lorenz system in Chaotic

Signal Masking.

• Implementation of PWL circuits for the function x2 and x3

FURTHER

We could not get a suitable signal source m(t) (Amplitude << 1 V) to use for our Chaotic

Masking system. This is something that can be worked further upon to make a system of

Lorenz circuits for secure communication.
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