Machine Learning applications in high energy physics

Viraj Thakkar MSc Thesis Presentation Supervised by Dr. Bedangadas Mohanty NISER,Bhubaneswar

Motivation

➢ The aim of this project is to use **Machine Learning** techniques for the purpose of classification of signal and background events of resonance particle K*0 and **improve the significance** of the signal as compared to traditional approach. The signal is rarely visible to $\mathsf{approad}$.

signal is rarely visible

Reference: B.Abelev et al, ALICE Collaboration: Phys. Rev. C 91 (2015) 024609

Machine Learning

➢ Machine Learning(ML) is a field of Artificial Intelligence(AI) that uses statistical techniques to provide computer systems the ability to ``learn" from data, without being explicitly programmed.

defines the data point **x**

The Machine Learning process

Toolkit For Multivariate Analysis (TMVA)

- TMVA provides a framework for multivariate analysis (ML classification algorithms) implemented in ROOT
- We have used Boosted Decision Tree(BDT) as our ML classification algorithm.

Why we need Multivariate Analysis? : Better separation

Decision Trees

- A decision tree(DT) is a tree-like structure that uses a branching method to illustrate possible outcome of a decision.
- An event is either classified as signal or background by either passing or not passing a condition (cut) on a specific node until a decision is made.
- A sequence of binary splits using the discriminating variables(features) x_i is applied to the data.
- The split is such that we get the best separation between signal and background.

Boosting

- Boosted Decision Trees (BDT) is a prediction model which uses an ensemble of ``weak classifiers" (decision trees).
- It is a model designed to make fewer and fewer mistakes as more trees are added to it.
- BDT is an algorithm which combines forests of DTs, each weighted according to their importance.

Based on the output of all trees in the forest, each event is assigned a BDT response value ranging from -1 to +1. Background-like events will have a BDT response value shifted 19-11-2018 towards -1, and signal-like events will have a response value shifted towards +1

Data Set

We have used pp collisions data at \sqrt{s} = 7 TeV from ALICE detector at LHC

Reconstructed Monte Carlo | Data

System: p+p Period: LHC10f6a Event generator: PYTHIA Events: ~10M

System: p+p Period: LHC10d Events: ~10M

Event Selection: $|V_z| < 10$ cm.

Track Selection: ITS-TPC 2010 cuts

Reference: B. Abelev et al ALICE Collaboration: Eur. Phys. J. C72 (2012) 2183

Preparation of data for training, testing and application

$$
K^{*0} \to K^+ + \pi^-
$$

- K^{*0} := Mother Particle
- $K^+ :=$ Daughter Particle 1
- $\pi^- :=$ Daughter Particle 2
- \rightarrow **Signal** candidates are formed by K^+ and π^- pairs which are decayed from K^{*0} . Generated level MC PID is used to select true K^+ and π^-
- \rightarrow **Background** candidates are formed by same sign K and π like pairs which are selected by using energy loss information in TPC detector.
- \rightarrow **Unlike** pairs are all combinations of K^+ and π^- pairs which constitutes signal plus background events.

Input features: MC (PYTHIA)

18 (1/N) dN / 0.0092 $(1/N)$ dN $/$ 0.0127 30 16 $25 F$ $(0.0,$ 12 $20 E$ 15 10 Ω Ω -0.15 -0.1 -0.05 $\overline{0}$ 0.05 0.1 0.15 -0.2 -0.1 0.2 $\overline{0}$ 0.1 dcad2 dcad1 Input variable: mother P Input variable: eta of kaon Input variable: eta of pion (1/N) dN / 0.0204 GeV/c Signal 0.0442 $(1/N)$ dN / 0.0422 Background 0.7 0.8 (MN) dN/ U™ | Possiel B 0.5 0.6 2.5 $0₄$ $2¹$ 0.4 0.3 0.2 0.2 0.5 Ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 $\overline{0}$ mother P_T [GeV/c] eta of pion eta of kaon Input variable: costheta* (beam axis) Input variable: eta of mother Input variable: costheta* (production plane) 0.6 $(1/N)$ dN $/$ 0.235 0.0256 $(1/N)$ dN $/$ 0.0256 0.5 (MN) dN / 2.5 1.6 0.4 1.4 0.3 0.8 0.2 0.6 0.4 0.1 0.5 0.2 ∩ - Ω 0_0 -5 -4 -3 -2 -1 0 $\overline{2}$ $\mathbf{3}$ 0.2 0.6 0.8 0.2 0.4 0.6 0.8 $\overline{1}$ $\overline{\mathbf{r}}$ 0.4 costheta* (production plane) costheta* (beam axis) eta of mother

0<p_T(mother)<0.8 GeV/c

Correlation coefficient percentage

Correlation Matrix (background)

Input features used for training phase

Selected features have less correlation with invariant mass

Correlation Matrix (signal)

Correlation Matrix (background)

TMVA overtraining check for classifier: BDT

 $19-11-2018$ **BDT response** 13

Cut efficiencies and optimal cut value

 $19-11-2018$ Cut value applied on BDT output 14

Invariant mass distribution: MC (PYTHIA)

Comparison of signal obtained by Monte-Carlo

Extraction yield, significance and χ^2 /ndf of the fit suggests a better extraction of signal by using Machine Learning via BDT for MC data.

Input Features: ALICE data

0<p_T(mother)<0.8 GeV/c

TMVA overtraining check for classifier: BDT

¹⁹⁻¹¹⁻²⁰¹⁸ **BDT response**

Cut efficiencies and optimal cut value

Invariant mass distribution: ALICE data

Comparison of signal obtained from ALICE data

Extraction yield, significance and χ^2 /ndf of the fit suggests a better extraction of signal by using Machine Learning via BDT for real data too.

Summary

In this analysis, we have extracted K^{*0} signal by two methods 1)**Traditional invariant mass technique** 2)**ML classification by BDT**

In both cases of Monte-Carlo and real data, we obtained a better significance by machine learning method as compared to the traditional method.

Outlook

- In future, we will extend this analysis for resonances which undergo 3-body decay.
- We will implement this analysis on Pb-Pb nuclear collisions data
- Machine Learning can also be applied to extract signal from rare resonances such as $K^*(1410)$, $K^*(1680)$ and $\Xi(1820)$.

Backup

Fig. 1: (Colour online) Specific ionization energy loss dE/dx vs. momentum for tracks measured with the ALICE TPC. The solid lines are parametrizations of the Bethe-Bloch function [23].

Standard Track Selection Cuts

- 1. $p_T > 0.15 \text{ GeV/c}$
- 2. $-0.8 < \eta < 0.8$
- 3. Reject kink daughters
- 4. Ratio of crossed rows over findable cluster > 0.8
- 5. Minimum (Maximum) number of rows crossed in TPC is 70(159).
- 6. TPC χ^2 /clusters < 4.0
- 7. ITS χ^2 /clusters < 36.0
- 8. $(DCA)_r (p_T) < 0.0182 + 0.0350 p_T^{-1.0}$ cm
- 9. $|DCA|_z < 2$ cm
- 10. $|y_{pair}| < 0.5$

Correlation coefficient percentage

Correlation Matrix (signal)

Input features used for training phase.

Selected features have less correlation with invariant mass

Correlation Matrix (background)

DT algorithm

- An event is either classified as signal or background by either passing or not passing a condition (cut) on a specific node until a decision is made.
- In order to determine these conditions(cuts) , the decision tree is grown starting from the root node.

Where to stop ? Stop the splitting when we reach maximum tree depth or we have exhausted all our features!

Class of a leaf : If purity(S/S+B) > 0.5 then signal, otherwise background.

How do I select which feature I take first?

Gini Index : Define as $p^2 + q^2$ (at a given node)

- p: fraction of positive (signal) events
- q=1-p : fraction of negative (background) events

$$
I_{\mathbf{G}} = f_{\mathrm{left}} * G_{\mathrm{left}} + f_{\mathrm{right}} * G_{\mathrm{right}}
$$

where,

$$
f_{left}
$$
 = fraction of events which go in the left split
\n f_{right} = fraction of events which go in the right split
\n G_{left} = Gini index of left node
\n G_{right} = Gini index of right node

Split on Gender:

Similar for Split on Class:

1. Gini for sub-node Class IX = $(0.43)*(0.43)+(0.57)*(0.57)=0.51$

2. Gini for sub-node Class $X = (0.56) * (0.56) + (0.44) * (0.44) = 0.51$

- 1. Gini for sub-node Female = $(0.2) * (0.2) + (0.8) * (0.8) = 0.68$
- 2. Gini for sub-node Male = $(0.65)*(0.65)+(0.35)*(0.35)=0.55$
- 3. Weighted Gini for Split Gender = $(10/30)$ *0.68 + $(20/30)$ *0.55 = 0.59 3. Weighted Gini for Split Class = $(14/30)$ *0.51 + $(16/30)$ *0.51 = 0.51

Select this one first! 19-11-2018 31

AdaBoost: Formula for computing coefficient \hat{w}_t of classifier $f_t(x)$

$$
\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)
$$

19-11-2018 32

AdaBoost: Formula for updating weights α_i

$$
\alpha_i \leftarrow \begin{bmatrix} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \end{bmatrix}
$$

AdaBoost: learning ensemble

- $\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 weighted_error(f_t)}{weighted_error(f_t)} \right)$ • Start same weight for all points: $\alpha_i = 1/N$
- For $t = 1,...,T$ α_i \leftarrow $\begin{cases} \alpha_i e^{-W_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \end{cases}$ - Learn $f_t(x)$ with data weights α_i - Compute coefficient ŵ, – Recompute weights α_i - Normalize weights α_i • Final model predicts by: α_i $\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$

Threshold split selection algorithm hear

- Step 1: Sort the values of a feature $h_i(x)$: Let $\{v_1, v_2, v_3, ... v_N\}$ denote sorted values
- Step 2:
	- $-$ For $i = 1 ... N-1$
		- Consider split $t_i = (v_i + v_{i+1}) / 2$
		- Compute classification error for treshold split $h_j(x) >= t_j$
	- Chose the twith the lowest classification error