Machine Learning applications in high energy physics

Viraj Thakkar MSc Thesis Presentation Supervised by Dr. Bedangadas Mohanty NISER,Bhubaneswar

Motivation

The aim of this project is to use **Machine Learning** techniques for the purpose of classification of signal and background events of resonance particle K^{*0} and **improve the significance** of the signal as compared to traditional approach.

Fig: Large combinatorial background (left), signal is rarely visible

Reference: B.Abelev et al, ALICE Collaboration: Phys. Rev. C 91 (2015) 024609

Machine Learning

Machine Learning(ML) is a field of Artificial Intelligence(AI) that uses statistical techniques to provide computer systems the ability to ``learn" from data, without being explicitly programmed.

defines the data point **x**

The Machine Learning process

	IIIe Machine Leanning process				
	Training		Testing App	lication	
Training	→The classifier uses data points x and learns about the features	Testing	→The classifier makes Application predictions on untrained data points x	→The classifier makes predictions on new unknown data points x	
	→Classifier learns the data in the form of weights θ		\rightarrow Compare the classifier predicted output $h_{\theta}(x)$ with the actual label y of the data x	→Predictions are made using the weights θ which the classifier learned during training	
	→Uses the label y=0 or 1 for the data point x	-	→Does not use the labels y=0 or 1 for the data point x while testing.	→Labels y=0 or 1 are not known. Classifier predicts it.	

Toolkit For Multivariate Analysis (TMVA)

- TMVA provides a framework for multivariate analysis (ML classification algorithms) implemented in ROOT
- We have used Boosted Decision Tree(BDT) as our ML classification algorithm.

Decision Trees

- A decision tree(DT) is a tree-like structure that uses a branching method to illustrate possible outcome of a decision.
- An event is either classified as signal or background by either passing or not passing a condition (cut) on a specific node until a decision is made.
- A sequence of binary splits using the discriminating variables(features) x_i is applied to the data.
- The split is such that we get the best separation between signal and background.

Boosting

- Boosted Decision Trees (BDT) is a prediction model which uses an ensemble of ``weak classifiers" (decision trees).
- It is a model designed to make fewer and fewer mistakes as more trees are added to it.
- BDT is an algorithm which combines forests of DTs, each weighted according to their importance.

19-11-2018

towards -1, and signal-like events will have a response value shifted towards +1

Data Set

We have used pp collisions data at \sqrt{s} = 7 TeV from ALICE detector at LHC

Reconstructed Monte Carlo

System: p+p Period: LHC10f6a Event generator: PYTHIA Events: ~10M

Data

System: p+p Period: LHC10d Events: ~10M

Event Selection: $|V_z| < 10$ cm.

Track Selection: ITS-TPC 2010 cuts

Reference: B. Abelev et al ALICE Collaboration: Eur. Phys. J. C72 (2012) 2183

Preparation of data for training, testing and application

$$K^{*0} \to K^+ + \pi^-$$

- $K^{*0} := Mother Particle$
- $K^+ :=$ Daughter Particle 1
- $\pi^- :=$ Daughter Particle 2
- →**Signal** candidates are formed by K^+ and π^- pairs which are decayed from K^{*0} . Generated level MC PID is used to select true K^+ and π^-
- \rightarrow **Background** candidates are formed by same sign K and π like pairs which are selected by using energy loss information in TPC detector.
- \rightarrow **Unlike** pairs are all combinations of K^+ and π^- pairs which constitutes signal plus background events.

Input features: MC (PYTHIA)

Input variable: dcad1 Input variable: dcad2 (1/N) dN / 0.0092 (1/N) dN / 0.0127 30 16 25 % / (0.0, (12 20 15 10 0 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 -0.2 -0.1 0.2 0 0.1 dcad2 dcad1 Input variable: mother P Input variable: eta of kaon Input variable: eta of pion Signal 0.0442 (1/N) dN / 0.0204 GeV/d (1/N) dN / 0.0422 **7777** Background 0.7 0.1 /NP (N/L) Ծ~ԾՆ~Ն-Մ 0 0.6 2.5 0.4 0.4 0.3 0.2 0.2 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 -0.8 -0.6 -0.4 -0.2 0 mother P_T [GeV/c] eta of pion eta of kaon nput variable: costheta* (beam axis) Input variable: eta of mother Input variable: costheta* (production plane) 0.6 (1/N) dN / 0.235 0.0256 (1/N) dN / 0.0256 0.5 1/N) dN/ 2.5 1.6 0.4 1.4 0.3 0.2 0.8 0.6 0.4 0.1 0 0.2 0 0 -5 -4 -3 -2 -1 0 2 3 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 4 costheta* (beam axis) costheta* (production plane) eta of mother

0<p_T(mother)<0.8 GeV/c

Correlation coefficient percentage

Correlation Matrix (background)

Input features used for training phase

Selected features have less correlation with invariant mass

Correlation Matrix (signal)

Correlation Matrix (background)

TMVA overtraining check for classifier: BDT

Cut efficiencies and optimal cut value

Invariant mass distribution: MC (PYTHIA)

Comparison of signal obtained by Monte-Carlo

Method	χ^2 /ndf	S	S + B	$S/\sqrt{S+B}$	Input Yield
Machine Learning	42.96/40	$\frac{30931.6}{0.92}$ = 33621.3	906953	32.48	34253
Traditional Approach	62.19/40	30115	1355500	25.87	34253

Extraction yield, significance and χ^2 /ndf of the fit suggests a better extraction of signal by using Machine Learning via BDT for MC data.

Input Features: ALICE data

0<p_T(mother)<0.8 GeV/c

TMVA overtraining check for classifier: BDT

BDT response¹⁸

Cut efficiencies and optimal cut value

Invariant mass distribution: ALICE data

Comparison of signal obtained from ALICE data

Method	χ^2 /ndf	S	S + B	$S/\sqrt{S+B}$
Machine Learning	50.35/46	$\frac{75934.8}{0.93}$ = 81650.3	3626890	38.54
Traditional Approach	47.11/43	82346.8	5227420	34.82

Extraction yield, significance and χ^2 /ndf of the fit suggests a better extraction of signal by using Machine Learning via BDT for real data too.

Summary

In this analysis, we have extracted K^{*0} signal by two methods 1)**Traditional invariant mass technique** 2)**ML classification by BDT**

In both cases of Monte-Carlo and real data, we obtained a better significance by machine learning method as compared to the traditional method.

Outlook

- In future, we will extend this analysis for resonances which undergo 3-body decay.
- We will implement this analysis on Pb-Pb nuclear collisions data
- Machine Learning can also be applied to extract signal from rare resonances such as K*(1410), K*(1680) and Ξ(1820).

Backup

Fig. 1: (Colour online) Specific ionization energy loss dE/dx vs. momentum for tracks measured with the ALICE TPC. The solid lines are parametrizations of the Bethe-Bloch function [23].

Standard Track Selection Cuts

- 1. $p_T > 0.15 \text{ GeV/c}$
- 2. $-0.8 < \eta < 0.8$
- 3. Reject kink daughters
- 4. Ratio of crossed rows over findable cluster > 0.8
- 5. Minimum(Maximum) number of rows crossed in TPC is 70(159).
- 6. TPC χ^2 /clusters < 4.0
- 7. ITS χ^2 /clusters < 36.0
- 8. $(DCA)_r (p_T) < 0.0182 + 0.0350 p_T^{-1.0}$ cm
- 9. $|DCA|_z < 2 \text{ cm}$
- 10. $|y_{pair}| < 0.5$

Correlation coefficient percentage

Correlation Matrix (signal)

Correlation Matrix (background)

Input features used for training phase.

Selected features have less correlation with invariant mass

Correlation Matrix (background)

DT algorithm

- An event is either classified as signal or background by either passing or not passing a condition (cut) on a specific node until a decision is made.
- In order to determine these conditions(cuts), the decision tree is grown starting from the root node.

Where to stop ? Stop the splitting when we reach maximum tree depth or we have exhausted all our features!

Class of a leaf : If purity(S/S+B) > 0.5 then signal, otherwise background.

How do I select which feature I take first?

Gini Index : Define as $p^2 + q^2$ (at a given node)

- p: fraction of positive (signal) events
- q=1-p : fraction of negative (background) events

Weighted Gini Split:

$$\mathbf{I_G} = \mathbf{f_{left}} * \mathbf{G_{left}} + \mathbf{f_{right}} * \mathbf{G_{right}}$$

where,

$$f_{left} =$$
 fraction of events which go in the left split
 $f_{right} =$ fraction of events which go in the right split
 $G_{left} =$ Gini index of left node
 $G_{right} =$ Gini index of right node
19-11-2018

Split on Gender:

Similar for Split on Class:

1. Gini for sub-node Class IX = (0.43)*(0.43)+(0.57)*(0.57)=0.51

2. Gini for sub-node Class X = (0.56)*(0.56)+(0.44)*(0.44)=0.51

- 1. Gini for sub-node Female = $(0.2)^{*}(0.2) + (0.8)^{*}(0.8) = 0.68$
- 2. Gini for sub-node Male = (0.65)*(0.65)+(0.35)*(0.35)=0.55
- 3. Weighted Gini for Split Gender = (10/30)*0.68 + (20/30)*0.55 = 0.59 3. Weighted Gini for Split Class = (14/30)*0.51 + (16/30)*0.51 = 0.51

Select this one first!

31

$$\hat{\mathbf{w}}_{t} = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_{t})}{weighted_error(f_{t})} \right)$$

AdaBoost: Formula for updating weights α_i

$$\boldsymbol{\alpha}_{i} \leftarrow \begin{bmatrix} \boldsymbol{\alpha}_{i} e^{-\hat{w}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) = \mathbf{y}_{i} \\ \boldsymbol{\alpha}_{i} e^{\hat{w}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) \neq \mathbf{y}_{i} \end{bmatrix}$$

AdaBoost: learning ensemble

- Start same weight for all points: $\alpha_i = 1/N$ $\hat{w}_t = \frac{1}{2} \ln \left(\frac{1 weighted_error(f_t)}{weighted_error(f_t)} \right)$
- For t = 1,...,T $\boldsymbol{\alpha}_{i} \leftarrow \begin{bmatrix} \boldsymbol{\alpha}_{i} e^{-\boldsymbol{W}_{t}}, & \text{if } f_{t}(\boldsymbol{x}_{i}) = \boldsymbol{y}_{i} \\ \boldsymbol{\alpha}_{i} e^{\boldsymbol{\hat{W}}_{t}}, & \text{if } f_{t}(\boldsymbol{x}_{i}) \neq \boldsymbol{y}_{i} \end{bmatrix}$ - Learn $f_t(\mathbf{x})$ with data weights $\boldsymbol{\alpha}_i$ - Compute coefficient \hat{w}_{t} - Recompute weights α_i - Normalize weights α_i • Final model predicts by: $\alpha_i \leftarrow$ $\hat{y} = sign\left(\sum_{t=1}^{I} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$

Threshold split selection algorithm

- Step 1: Sort the values of a feature h_j(x) : Let {v₁, v₂, v₃, ... v_N} denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for treshold split h_j(x) >= t_i
 - Chose the t with the lowest classification error